Math, asked by harjitsingh9805, 6 months ago

√limit-22 x^2019 dx is equals to​

Attachments:

Answers

Answered by Asterinn
14

  \implies\displaystyle\int\limits^{ \sf2}_{ \sf - 2}    \sf{x}^{2019} dx

We know that :-

 \sf\implies\displaystyle\int\limits^{ \sf \: n}_{ \sf  \: m}    \sf \: f(x)dx =  g(x)  {\bigg]}^{n}_{ m}  = g(n) - g(m)

  \implies\displaystyle\int\limits^{ \sf2}_{ \sf - 2}    \sf{x}^{2019} dx =   \dfrac{1}{2020} { \large \: x}^{2020}  {\bigg]}^{2}_{ - 2}

Now put the value of upper limit and lower limit.

 \sf\implies \dfrac{1}{2020} \:  { \large \: x}^{2020}  {\bigg]}^{2}_{ - 2}  =  \dfrac{1}{2020} \bigg[ {2}^{2020}  - { ( - 2)}^{2020} \bigg]

\sf\implies   \dfrac{1}{2020} \bigg[ {2}^{2020}  - \bigg( { {( - 1)}^{2020}  \times  (  2)}^{2020} \bigg) \bigg]

\sf\implies   \dfrac{1}{2020} \bigg[ {2}^{2020}  - \bigg( { 1\times  (  2)}^{2020} \bigg) \bigg]

\sf\implies   \dfrac{1}{2020} \bigg({2}^{2020}  - {2}^{2020} \bigg)

\sf\implies   \dfrac{1}{2020}  \times 0

\sf\implies  0

Answer :

option (a)0 is correct.

Similar questions