Math, asked by tirawaligupta1975, 11 months ago

limit as x tends to 0 : (4sin x - 9x cosx ) / (3x^2-5 tan x)​

Answers

Answered by msasomrat
2

Answer:

1

Step-by-step explanation:

use la hospitals rule

Answered by harendrachoubay
4

The value of \lim_{x \to 0} \dfrac{4\sin x - 9x\cos x}{3x^2- \tan x} = 1

Step-by-step explanation:

We have,

\lim_{x \to 0} \dfrac{4\sin x - 9x\cos x}{3x^2- \tan x}

To find, the value of \lim_{x \to 0} \dfrac{4\sin x - 9x\cos x}{3x^2- \tan x} = ?

\lim_{x \to 0} \dfrac{4\sin x - 9x\cos x}{3x^2- \tan x} ( \dfrac{0}{0} form)

Dividing numerator and denominator by x, we get

=\lim_{x \to 0} \dfrac{\dfrac{4\sin x - 9x\cos x}{x} }{\dfrac{3x^2- \tan x}{x}}

=\lim_{x \to 0} \dfrac{4\dfrac{\sin x }{x}- 9\cos x }{3x-5\dfrac{\tan x}{x}}

We know that,

\lim_{x \to 0} \dfrac{\sin x}{x}=1 and

\lim_{x \to 0} \dfrac{\tan x}{x}=1

=\lim_{x \to 0} \dfrac{4(1)- 9\cos x }{3x-5(1)}

Put x = 0, we get

=\dfrac{4- 9\cos 0 }{3(0)-5}

=\dfrac{4- 9(1) }{3(0)-5}

=\dfrac{-5 }{-5}

= 1

Thus, the value of \lim_{x \to 0} \dfrac{4\sin x - 9x\cos x}{3x^2- \tan x} = 1

Similar questions