Math, asked by nilakshibhanot, 1 month ago

limit e power X minus e power minus X over sin x​

Answers

Answered by SULTHANASAJI
1

Step-by-step explanation:

Given,

x→0

lim

(

2(x−sin(x))

e

x

−e

sin(x)

)

=

2

1

x→0

lim

(

x−sin(x)

e

x

−e

sin(x)

)

Apply L-Hospital's rule

=

2

1

x→0

lim

(

1−cos(x)

e

x

−e

sin(x)

cos(x)

)

=

2

1

x→0

lim

(

sin(x)

e

x

−e

sin(x)

(cos

2

(x)−sin(x))

)

Apply L-Hospital's rule

=

2

1

x→0

lim

(

cos(x)

2

3e

sin(x)

sin(2x)+2e

x

−2e

sin(x)

cos

3

(x)+2e

sin(x)

cos(x)

)

=

2

1

x→0

lim

(

2cos(x)

3e

sin(x)

sin(2x)+2e

x

−2e

sin(x)

cos

3

(x)+2e

sin(x)

cos(x)

)

=

2

1

2cos(0)

3e

sin(0)

sin(2⋅0)+2e

0

−2e

sin(0)

cos

3

(0)+2e

sin(0)

cos(0)

=

2

1

Answered by ankush79918
1

Lt (e^x-e^-x)/Sinx

x→0

Lt

x→0. (e^x-1)/Sinx - (e^-x -1)/Sinx

Lt. (e^x-1)/x/Sinx/x - Lt. (e^-x-1)/-x/Sinx/-x

x→0. x→0

=1+1=2

Similar questions