Math, asked by saisumathi036794, 6 months ago

limit extends to 2 x square - 7 x minus 4 by 2 x minus 1 into root x minus 2

Answers

Answered by pulakmath007
8

SOLUTION

TO EVALUATE

\displaystyle \sf{ \lim_{x \to 2} \:   \frac{2 {x}^{2} - 7x  -  4 }{(2x - 1) (\sqrt{x } - 2) } }

EVALUATION

\displaystyle \sf{ \lim_{x \to 2} \:   \frac{2 {x}^{2} - 7x  -  4 }{(2x - 1) (\sqrt{x } - 2) } }

\displaystyle \sf{  = \lim_{x \to 2} \:   \frac{2 {x}^{2} - 8x + x - 4 }{(2x - 1) (\sqrt{x } - 2) } }

\displaystyle \sf{  = \lim_{x \to 2} \:   \frac{(2x + 1)(x - 4) }{(2x - 1) (\sqrt{x }  - 2)} }

\displaystyle \sf{  = \lim_{x \to 2} \:   \frac{(2x + 1)( \sqrt{x}  +   2)(  \sqrt{x}  - 2) }{(2x - 1) (\sqrt{x }  - 2)} }

\displaystyle \sf{  = \lim_{x \to 2} \:   \frac{(2x + 1)( \sqrt{x}  +   2) }{(2x - 1)} }

\displaystyle \sf{  =    \frac{(4 + 1)( \sqrt{2}  + 2)}{(4 - 1) } }

\displaystyle \sf{  =  \frac{5}{3} (2 +  \sqrt{2} ) }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. the value of limited x to 0 sin7x+sin5x÷tan5x-tan2x is

https://brainly.in/question/28582236

2. Lim x→0 (log 1+8x)/x

https://brainly.in/question/18998465

Similar questions