Math, asked by yagnesh214, 1 year ago

limit limy tends to0 (x+y)sec(x+y) - xsecx/y

Answers

Answered by paulaiskander2
5

\frac { ( x + y ) \sec ( x + y ) - x \sec x } { y }=\frac { ( x + y ) \cos ( x ) - x \cos ( x + y ) } { y \cos ( x + y ) \cos ( x )}\\ \\=\frac { x \cos ( x ) ( 1 - \cos ( y ) ) + y \cos ( x ) + x \sin ( x ) \sin ( y ) } { y \cos ( x + y ) \cos ( x )}\\ \\=\frac { x \cos ( x ) } { \cos ( x + y ) \cos ( x ) }*\frac { 1 - \cos ( y ) } { y } + \frac { 1 } { \cos ( x + y ) }+\frac { x \sin ( x ) } { \cos ( x + y ) \cos ( x ) } * \frac { \sin ( y ) } { y }$\\ \\

=0+\frac { 1 } { \cos ( x ) } + \frac { x \sin x } { \cos ^ { 2 } ( x ) } = \sec ( x ) ( 1 + x \tan ( x ) ).

Note that:

$\frac { 1 - \cos ( y ) } { y } \rightarrow 0$ and $\frac { \sin ( y ) } { y } \rightarrow 1$ and $\cos ( x + y ) \rightarrow \cos ( x )$

Similar questions