Math, asked by Anonymous, 9 months ago

limit of e^sinax - e^sin bx /tan 2x​

Answers

Answered by amitnrw
6

Given :  \lim_{x \to 0} \dfrac{e^{\sin ax} -e^{\sin bx} }{\tan  2x}

To Find :  evaluate limit

Solution:

\lim_{x \to 0} \dfrac{e^{\sin ax} -e^{\sin bx} }{\tan  2x}

Substituting  x = 0  

sinx = 0  , tan x = 0 Hence

(e⁰ - e⁰) /0

= (1 - 1)/0

= 0/0

Apply L' Hospital rule

Differentiate numerator and denominator separately

\lim_{x \to 0} \dfrac{a\cos ax .e^{\sin ax} -b \cos bx .e^{\sin bx} }{2\sec^2  2x}

Substituting  x = 0  

cos 0 = 1  

sec 0 = 1

=  (a (1)e⁰  -b (1) e⁰ ) / (2 * 1²)

=  (a - b)/2

\lim_{x \to 0} \dfrac{e^{\sin ax} -e^{\sin bx} }{\tan  2x}=\dfrac{a-b}{2}

Learn More:

2.3(x−1.2)=−9.66 Enter your answer, as a decimal, in the box. x

brainly.in/question/11264248

If, x = [root(p+q) +root(pq)]

brainly.in/question/381466

Similar questions