Math, asked by Anonymous, 9 days ago

Limit to be solved without using L'Hôpital's rule.
\lim \limits_{x \to 2} \dfrac{ {x}^{3} - 3 {x}^{2} + 4  }{ {x}^{4} - 8 {x}^{2}   + 16}

Answers

Answered by user0888
28

\rm\large\underline{\text{Explanation}}

Since the denominator of \dfrac{x^{3}-3x^{2}+4}{x^{4}-8x^{2}+16} becomes zero at \text{$x=2$, $x=-2$,} the value of the function does not exist for \text{$x=2$, $x=-2$.} So, substitution does not give the limiting value.

Since rational functions are continuous everywhere except where the denominator becomes zero, we know that,

\cdots \longrightarrow \displaystyle \lim_{x \to 2-}f(x)=\lim_{x \to 2+}f(x).

So, the limit exists.

\boxed{\begin{aligned}\displaystyle\lim_{x \to 2}\dfrac{x^{3}-3x^{2}+4}{x^{4}-8x^{2}+16}&=\lim_{x \to 2}\dfrac{\cancel{(x-2)^{2}}(x+1)}{(x+2)^{2}\cancel{(x-2)^{2}}}\\\\&=\lim_{x \to 2}\dfrac{x+1}{(x+2)^{2}}\ [\because \displaystyle \lim_{x \to a}f(x)g(x)=\lim_{x \to a}f(x) \lim_{x \to a}g(x)]\\\\&=\dfrac{3}{16}\end{aligned}}

So,

\cdots \longrightarrow \boxed{\displaystyle\lim_{x \to 2}\dfrac{x^{3}-3x^{2}+4}{x^{4}-8x^{2}+16}=\dfrac{3}{16}}

\rm\large\underline{\text{Extra information}}

Properties of limits

\boxed{\begin{aligned}&(1)\displaystyle \lim_{x \to a}kf(x)=k \lim_{x \to a}f(x) \\\\&(2)\displaystyle \lim_{x \to a}\{f(x) \pm g(x)\}= \lim_{x \to a}f(x) \pm \lim_{x \to a}g(x)\\\\&(3)\displaystyle \lim_{x \to a}f(x)g(x)=\lim_{x \to a}f(x) \lim_{x \to a} g(x)\\\\&(4)\displaystyle \lim_{x \to a}\dfrac{f(x)}{g(x)}=\frac{\displaystyle \lim_{x \to a}f(x)}{\displaystyle \lim_{x \to a}g(x)}\text{ for $\lim_{x \to a}g(x) \neq 0$}\end{aligned}}

And it holds for \text{$x \to a+$, $x \to a-$, $x \to \infty$, $x \to \infty$.}

Answered by XxitzZBrainlyStarxX
7

Question:-

Limit to be solved without using L'Hôpital's rule.

 \sf \large\lim \limits_{x \to 2} \dfrac{ {x}^{3} - 3 {x}^{2} + 4 }{ {x}^{4} - 8 {x}^{2} + 16} .

Given:-

 \sf \large\lim \limits_{x \to 2} \dfrac{ {x}^{3} - 3 {x}^{2} + 4 }{ {x}^{4} - 8 {x}^{2} + 16} .

To Find:-

  • We have to Find value of the limit.

Solution:-

Let, the value of the limit be z.

 \sf \large\Rightarrow z = \lim \limits_{x \to 2} \dfrac{ {x}^{3} - 3 {x}^{2} + 4 }{ {x}^{4} - 8 {x}^{2} + 16}

If we put directly x = 2, we get

 \sf \large \frac{0}{0} form.

So, by L'Hôpital's rule.

 \sf \large \Rightarrow z = \lim \limits_{x \to 2} \:   \frac{f'(x)}{g'(x)}

 \sf \large \Rightarrow z  = \lim \limits_{x \to 2} \dfrac{ 3 {x}^{2}  -  6x}{ 4x {}^{3}  - 16x}

So, again it occurs

 \sf \large \frac{0}{0} So Using L'Hôpital's rule again.

 \sf \large \Rightarrow z = \lim \limits_{x \to 2}  \:  \frac{6x - 6}{12x {}^{2}   - 16}

 \sf \large \Rightarrow z =  \frac{6}{32}

  \sf \large \Rightarrow z =  \frac{3}{16}

Answer:-

 \sf \large \green{Hence,  \: the \:  value  \: of \:  limit \:  is \:   \frac{3}{16}. }

Hope you have satisfied.

Similar questions