Math, asked by ronakgrewal9671gmail, 10 months ago

limit\x=0 sin5x\SIN15X​

Answers

Answered by Anonymous
2

Step-by-step explanation:

Use L' hospital theorem =

= 5cos5x/15 cos15x= 5/15 = 1/3

Thanks....❤

Answered by Anonymous
3
  • Solution:-

 \tt lim_{x \to 0} \:  \:   \frac{ \sin(5x) }{15x}   \\  \\  \tt   \: lim_{x \to 0} \:  \:  \frac{ \frac{ \sin(5x) }{5x}  \times 5}{ \frac{ \sin(15x) }{5x \times 3}  \times 15}  \\  \\  \tt \:  lim_{x \to 0} \:  \: \frac{ \frac{ \sin(5x) }{5x} \times 5 }{ \frac{ \sin(15x) }{15x} \times 15 }  \\  \\  \tt \:  =  \:  \:  \frac{1 \times5 }{1 \times 15}  \\  \\  \tt \:  =  \:  \:  \frac{5}{15}  \\  \\ \tt  \:  =  \:  \:  \frac{1}{3} is \: answer. \\  \\  \\  \\  \tt \bf \red { \odot \:Explanation}  \\  \\  \tt  \: lim_{x \to 0} \:  \:  \frac{  \sin( \theta) }{ \theta}  = 1 \\  \\  \tt \: where \:  \theta \: is \: in \: redian \: .

Similar questions