Math, asked by muskan7426, 1 year ago

limit x-0(xcosx+sinx)/x^2+tanx​

Answers

Answered by Vmankotia
13

Step-by-step explanation:

please mark it best solution for this question

Attachments:
Answered by harendrachoubay
6

The value of \lim_{x \to 0} \dfrac{x\cos x+\sin x}{x^2+\​tan x} is 2.

Step-by-step explanation:

We have,

\lim_{x \to 0} \dfrac{x\cos x+\sin x}{x^2+\​tan x}

To find, the value of \lim_{x \to 0} \dfrac{x\cos x+\sin x}{x^2+\​tan x} ?

\lim_{x \to 0} \dfrac{x\cos x+\sin x}{x^2+\​tan x} , \dfrac{0}{0} form

Dividing numerator and denominator by x, we get

=\lim_{x \to 0} \dfrac{\dfrac{x\cos x+\sin x}{x}}{\dfrac{x^2+\​tan x}{x}}

=\lim_{x \to 0} \dfrac{\cos x+\dfrac{\sin x}{x}}{x+\dfrac{\​tan x}{x}}

We know that,

\lim_{x \to 0} \dfrac{\sin x}{x}=1 and

\lim_{x \to 0} \dfrac{\tan x}{x}=1

=\lim_{x \to 0} \dfrac{\cos x+\dfrac{\sin x}{x}}{x+\dfrac{\​tan x}{x}}

=\lim_{x \to 0} \dfrac{\cos x+1}{x+1}

Put x = 0, we get

= \dfrac{\cos 0+1}{0+1}

= \dfrac{1+1}{1}

= \dfrac{2}{1}

= 2

Thus, the value of \lim_{x \to 0} \dfrac{x\cos x+\sin x}{x^2+\​tan x} is 2.

Similar questions