Math, asked by akashkumar91751, 18 days ago

Limit x approaches to infinity (3x+7)/(x²-2)

Answers

Answered by NITESH761
0

Answer:

\tt 0

Step-by-step explanation:

We

 \tt \[ \lim_{x\to\infty}  \dfrac{(3x+7)}{(x^2-2)}\]

By L'Hôpital's rule,

\rm \tt \[ \lim_{x\to c}  \dfrac{f(x)}{g(x)}\]= \[ \lim_{x\to c}  \dfrac{\dfrac{d}{dx}f(x)}{\dfrac{d}{dx}g(x)}\]

\tt = \[ \lim_{x\to \infty}  \dfrac{3}{2x}\]

= \tt \dfrac{3}{2}· \dfrac{1}{\[ \lim_{x\to \infty}  x\]}

\tt = 0

Similar questions