Math, asked by ayush9035, 1 month ago

limit x extends to k Find (Tan x - Tan k) /(Sin x - Sin k)​

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{x \to k}\sf  \frac{tanx - tank}{sinx - sink}

If we put directly x = k, we get indeterminant form.

So, to evaluate this limit,

We know,

\red{ \boxed{ \sf{ \:sinx - siny = 2cos\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg]}}}

So, using this, we get,

\rm \:  =  \: \displaystyle\lim_{x \to k}\sf  \frac{ \dfrac{sinx}{cosx} -  \dfrac{sink}{cosk}  }{2cos\bigg[\dfrac{x + k}{2} \bigg]sin\bigg[\dfrac{x - k}{2} \bigg]}

\rm \:  =  \: \dfrac{1}{2cos\bigg[\dfrac{k + k}{2} \bigg]}\displaystyle\lim_{x \to k}\sf  \frac{sinxcosk - sinkcosx}{cosk \: cosx \times sin\bigg[\dfrac{x - k}{2} \bigg]}

We know,

\red{ \boxed{ \sf{ \:sinx \: cosy - siny \: cosx = sin(x - y)}}}

So, using this identity, we get

\rm \:  =  \: \dfrac{1}{2cos\bigg[\dfrac{2k}{2} \bigg] \times cosk \: cosk}\displaystyle\lim_{x \to k}\sf  \frac{sin(x - k)}{sin\bigg[\dfrac{x - k}{2} \bigg]}

We know,

\red{ \boxed{ \sf{ \:sin2x = 2sinx \: cosx}}}

So, using this identity, we get

\rm \:  =  \: \dfrac{1}{2 {cos}^{3}k} \: \displaystyle\lim_{x \to k}\sf  \frac{2sin\bigg[\dfrac{x - k}{2} \bigg]cos\bigg[\dfrac{x - k}{2} \bigg]}{sin\bigg[\dfrac{x - k}{2} \bigg]}

\rm \:  =  \: \dfrac{1}{{cos}^{3}k} \: \displaystyle\lim_{x \to k}\sf  cos\bigg[\dfrac{x - k}{2} \bigg]

\rm \:  =  \: \dfrac{1}{{cos}^{3}k} \:  \times \sf  cos\bigg[\dfrac{k - k}{2} \bigg]

\rm \:  =  \: \dfrac{1}{{cos}^{3}k} \:  \times \sf  cos\bigg[\dfrac{0}{2} \bigg]

\rm \:  =  \: \dfrac{1}{{cos}^{3}k} \:  \times \sf  1

\rm \:  =  \: \dfrac{1}{{cos}^{3}k}

\rm \:  =  \:  {sec}^{3}k

Hence,

\rm :\longmapsto\:\red{ \boxed{ \sf{ \:  \:  \:\displaystyle\lim_{x \to k}\sf  \frac{tanx - tank}{sinx - sink}  =  {sec}^{3}k \:  \:  \: }}}

Additional Information :-

\red{ \boxed{ \sf{ \:\displaystyle\lim_{x \to 0}\sf  \frac{sinx}{x}  \: =1 \:  }}}

\red{ \boxed{ \sf{ \:\displaystyle\lim_{x \to 0}\sf  \frac{tanx}{x}  \: =1 \:  }}}

\red{ \boxed{ \sf{ \:\displaystyle\lim_{x \to 0}\sf  \frac{log(1 + x)}{x}  \: =1 \:  }}}

\red{ \boxed{ \sf{ \:\displaystyle\lim_{x \to 0}\sf  \frac{ {e}^{x}  - 1}{x}  \: =1 \:  }}}

\red{ \boxed{ \sf{ \:\displaystyle\lim_{x \to 0}\sf  \frac{ {a}^{x}  - 1}{x}  \: =loga \:  }}}

Similar questions