Math, asked by saviovarghese4845, 2 months ago

limit x > 0 (tanx-sin3x)/x^3

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \lim_{x \rarr0} \frac{ \tan(x) -  \sin(3x)  }{ {x}^{3} }  \\

Since, it is 0/0 form.. using l'hospital rule,

  = \lim_{x \rarr0} \frac{  \sec ^{2} (x)  -  3\cos(3x)  }{ 3{x}^{2} }  \\

  = \lim_{x \rarr0} \frac{  2\sec  ^{2} (x) \tan(x)    +   9\sin(3x)  }{ 6x }  \\

  = \lim_{x \rarr0} \frac{  2\sec  ^{2} (x) \tan(x)   }{ 6x }  +  \lim _{x \rarr0}  \frac{9 \sin(3x) }{6x}  \\

  =  \lim_{x \rarr0} \sec^{2} (x). \lim_{x \rarr0} \frac{ \tan(x)   }{ 3x }  +  \frac{9}{2}  \lim _{3x \rarr0}  \frac{ \sin(3x) }{3x}  \\

 = 1 \times  \frac{1}{3}  +  \frac{9}{2}  \\

 = \frac{1}{3}  +  \frac{9}{2}  \\

 =  \frac{2 + 27}{6}  \\

 =  \frac{29}{6}  \\

Similar questions