Math, asked by arnavvasi7277, 1 year ago

limit x mendekati 0 dari 3x²/2 sin²x adalah

Answers

Answered by MaheswariS
18

Answer:

\lim_{x\to0}\frac{3x^2}{2\:sin^2x}=3/2

Step-by-step explanation:

Formula used:

\bf{\lim_{x\to0}\frac{sinx}{x}=1}

\lim_{x\to0}\frac{3x^2}{2\:sin^2x}

=\lim_{x\to0}\frac{3/2}{sin^2x/x^2}

=\frac{\lim_{x\to0}(3/2)}{\lim_{x\to0}(sin^2x/x^2)}

=\frac{\lim_{x\to0}(3/2)}{\lim_{x\to0}(sinx/x)^2}

=\frac{\lim_{x\to0}(3/2)}{(\lim_{x\to0}sinx/x)^2}

=\frac{3/2}{(1)^2}

=3/2

Answered by harendrachoubay
5

The value of\lim_{x \to 0} \dfrac{3x^{2} }{2\sin ^{2}x}=\dfrac{3}{2} .

Step-by-step explanation:

We have,

\lim_{x \to 0} \dfrac{3x^{2} }{2\sin ^{2}x}

To find, the value of\lim_{x \to 0} \dfrac{3x^{2} }{2\sin ^{2}x}= ?

\lim_{x \to 0} \dfrac{3x^{2} }{2\sin ^{2}x}

=\dfrac{3}{2} \lim_{x \to 0} \dfrac{x^{2} }{\sin ^{2}x}

=\dfrac{3}{2} \lim_{x \to 0} \dfrac{1 }{\dfrac{\sin ^{2}x}{x^{2}} }

=\dfrac{3}{2} \lim_{x \to 0} \dfrac{1 }{(\dfrac{\sin x}{x})^{2}  }

=\dfrac{3}{2} \lim_{x \to 0} \dfrac{1}{1} }

[ ∵ \lim_{x \to 0} \dfrac{\sin x}{x}=1]

= \dfrac{3}{2}

Hence, the value of\lim_{x \to 0} \dfrac{3x^{2} }{2\sin ^{2}x}=\dfrac{3}{2} .

Similar questions