Math, asked by songja, 1 year ago

Limit x tend to 0 sin5x by tan7x

Answers

Answered by abhi178
3
\bold{Lim_{x\to 0} \,\frac{sin5x}{tan7x}}
First of all we should check form of limit ,
put x = 0 we get 0/0 it is in the form of limit .

Now, we should apply standard form of limit and its solution.
e.g., \bold{Lim_{x\to 0} \,\frac{sinx}{x}}=1
and similarly , \bold{Lim_{x\to 0} \,\frac{tanx}{x}}=1
Use these here,

\bold{Lim_{x\to 0} \,\frac{(sin5x).5x.(7x)}{(5x).tan7x(7x)}}
\bold{Lim_{x\to 0} \,\frac{sin5x}{5x}.\frac{7x}{tan7x}.\frac{5x}{7x}}}
\bold{Lim_{x\to 0} \,\frac{5x}{7x}}}
= 5/7

Hence, answer is 5/7
Similar questions