Math, asked by therajanand, 4 months ago

limit x tends to 0 √(1-cosx)/x​

Answers

Answered by Anonymous
9

Given Expression,

\displaystyle \:  \sf \ \: \lim_{x  \rightarrow \: 0} \:   \dfrac{ \sqrt{1 - cos \: x} }{x}

At 0, the above expression tends to 0/0 form.

We know that,

sin²∅ + cos²∅ = 1

cos2∅ = cos²∅ - sin²∅

Thus,

\displaystyle \: \implies \sf \ \: \lim_{x  \rightarrow \: 0} \:   \dfrac{ \sqrt{ {sin}^{2}  \dfrac{x}{2} +  {cos}^{2} \dfrac{x}{2}  - cos {}^{2}  \:  \dfrac{x}{2}  + sin {}^{2}  \dfrac{x}{2}} }{x}  \\  \\ \displaystyle \implies \sf \ \: \lim_{x  \rightarrow \: 0} \:   \dfrac{ \sqrt{ {2sin}^{2}  \dfrac{x}{2}   } }{x} \\  \\\displaystyle \implies \sf \  \sqrt{2 } \ \times \lim_{x  \rightarrow \: 0} \:   \dfrac{{sin}^{}  \dfrac{x}{2}}{x}

We know that,

\displaystyle \sf lim_{x \rightarrow 0} \dfrac{sin \ x}{x} = 1

Thus,

\displaystyle \implies \sf \  \sqrt{2 } \ \times \lim_{x  \rightarrow \: 0} \:   \dfrac{{sin} \dfrac{x}{2}}{2 \times  \dfrac{x}{2} }  \\  \\ \displaystyle \implies \sf \   \dfrac{\sqrt{2 }}{2} \ \times \lim_{x  \rightarrow \: 0} \:   \dfrac{{sin} \dfrac{x}{2}}{ \dfrac{x}{2} }   \\  \\  \implies \sf \dfrac{1}{ \sqrt{2}  }


Asterinn: Perfect !
Similar questions