Math, asked by udeshya217, 3 months ago

limit x tends to 0 √4+x -³√8+3x/x

Answers

Answered by pulakmath007
6

SOLUTION

TO EVALUATE

\displaystyle \sf{ \lim_{x \to 0} \:  \frac{ \sqrt{4 + x}  -  \sqrt[3]{8 + 3x} }{x}}

EVALUATION

\displaystyle \sf{ \lim_{x \to 0} \:  \frac{ \sqrt{4 + x}  -  \sqrt[3]{8 + 3x} }{x}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \bigg(  \frac{0}{0} \:  \: form \bigg)

\displaystyle \sf{  = \lim_{x \to 0} \:  \frac{   {(4 + x)}^{  \frac{1}{2} }  -  {(8 + 3x)}^{  \frac{1}{3} }   }{x}}  \:  \:  \:  \:  \:  \:  \:  \:  \bigg(  \frac{0}{0} \:  \: form \bigg)

\displaystyle \sf{  = \lim_{x \to 0} \:  \frac{  \frac{1}{2} {(4 + x)}^{  - \frac{1}{2} }  -  3 \times  \frac{1}{3} \times  {(8 + 3x)}^{ -  \frac{2}{3} }   }{1}}

\displaystyle \sf{  = \lim_{x \to 0} \:  \frac{  \frac{1}{2} {(4 + x)}^{ -  \frac{1}{2} }  -   {(8 + 3x)}^{ -  \frac{2}{3} }   }{1}}

\displaystyle \sf{  =  \frac{  \frac{1}{2} {(4 + 0)}^{  - \frac{1}{2} }  -   {(8 + 3.0)}^{ -  \frac{2}{3} }   }{1}}

\displaystyle \sf{  =   \frac{1}{2} {(4 )}^{  - \frac{1}{2} }  -   {(8 )}^{ -  \frac{2}{3} }   }

\displaystyle \sf{  =   \frac{1}{2} {( {2}^{2}  )}^{  - \frac{1}{2} }  -   {( {2}^{3}  )}^{ -  \frac{2}{3} }   }

\displaystyle \sf{  =   \frac{1}{ {2}^{2} }   -   { {2}^{ - 2}  }   }

\displaystyle \sf{  =   \frac{1}{4} -  \frac{1}{4}   }

 = 0

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Lim x--a (f(x) - f(a))/(x-a) gives

https://brainly.in/question/35766042

2. Lim x→0 (log 1+8x)/x

https://brainly.in/question/18998465

Similar questions