Math, asked by adrijasirkir, 1 day ago

limit x tends to 0 e
 { e}^{ - 2x}  - 1  \div x

Answers

Answered by esuryasinghmohan
1

Step-by-step explanation:

given :

  • limit x tends to 0 e
  •  { e}^{ - 2x} - 1 \div x

to find :

  • tex] { e}^{ - 2x} - 1 \div x[/tex]

solution :

  • hence, the answer is 0

Attachments:
Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\sf \frac{ {e}^{ - 2x} - 1 }{x}

If we substitute directly x = 0, we get

\rm \:  =  \:  \dfrac{ {e}^{0} - 1 }{0}

\rm \:  =  \:  \dfrac{ 1 - 1 }{0}

\rm \:  =  \:  \dfrac{0}{0}

which is indeterminant form.

So, Consider again

\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\sf \frac{ {e}^{ - 2x} - 1 }{x}

can be rewritten as

\rm \:  =  \: \displaystyle\lim_{x \to 0}\sf \frac{ {e}^{ - 2x} - 1 }{ - 2x}  \times ( - 2)

\rm \:  =  \:  - 2 \: \displaystyle\lim_{x \to 0}\sf \frac{ {e}^{ - 2x} - 1 }{ - 2x}

We know,

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}\sf \frac{ {e}^{x}  - 1}{x} \:  =  \: 1 \: }}

So, using this identity, we get

\rm \:  =  \:  - 2 \times 1

\rm \:  =  \:  - 2

Hence,

\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}\sf \frac{ {e}^{ - 2x} - 1 }{x} \:   =   \: -  \: 2 \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}\sf \:  \frac{sinx}{x} \:  =  \: 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}\sf \:  \frac{tanx}{x} \:  =  \: 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}\sf \:  \frac{ log(1 + x) }{x} \:  =  \: 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}\sf \frac{ {a}^{x}  - 1}{x} \:  =  \: loga \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to a}\sf \:  \frac{ {x}^{n} -  {a}^{n}  }{x - a}  =  {na}^{n - 1} \: }}

Similar questions