limit x tends to 0 e^x-1/tanx
Answers
Answer:
So, lim(x-->0) (tan x/x)^(1/x) is of the form "1^∞".
We evaluate this using logarithms.
Let L = lim(x-->0) (tan x/x)^(1/x).
So, ln L = lim(x-->0) ln(tan x/x) / x, now of the form "0/0".
Applying L'Hopital's Rule, we obtain
ln L = lim(x-->0) [sec^2(x)/tan x - 1/x] / 1
since (d/dx) ln(tan x/x) = (d/dx) [ln(tan x) - ln x] = sec^2(x)/tan x - 1/x.
Rewriting this (as this is of the form "∞ - ∞"):
ln L = lim(x-->0) sec^2(x)/tan x - 1/x
= lim(x-->0) 1/(sin x cos x) - 1/x
= lim(x-->0) 2/sin(2x) - 1/x, still of the form "∞ - ∞"
= lim(x-->0) [2x - sin(2x)] / (x sin(2x)), now of the form "0/0"
Apply L'Hopital's Rule again (two times):
ln L = lim(x-->0) [2 - 2 cos(2x)] / (sin(2x) + 2x cos(2x)), still of the form "0/0"
= lim(x-->0) 4 sin(2x) / (4 cos(2x) - 4x sin(2x))
= 0/(4 - 0)
= 0.
Hence, L = e^0 = 1.