Math, asked by sanjayakumardas71, 7 months ago

limit x tends to 0 is sin x cos x by 3x​

Answers

Answered by aryan073
1

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

 \:  \:  \gg \boxed{ \bf{answer}}

\bullet\displaystyle\tt{lim_x\to0 \: \: \dfrac{sinxcosx}{3x}}

\implies\displaystyle\tt{lim_x\to0 \: \: \dfrac{sinxcosx}{3x}}

 \:  \: \gg:\large \boxed{ \sf{properties}}

 \:  \bullet \displaystyle \bf{ \frac{sinx}{x}  = 1 \: at \: x \: tends \: to \: 0 \: only}

 \:  \bullet \displaystyle \bf{ \frac{cosx}{x}  = 1 \: if \: x \: tends \: to \: 0 \: only}

\implies\displaystyle\tt{lim_x\to0 \: \: \dfrac{sinxcosx}{3x}}

\implies\displaystyle\tt{lim_x\to0 \: \: \dfrac{cosx}{x} \dfrac{sinx}{3}}

\implies\displaystyle\tt{lim_x\to0 \: \: 1\times \dfrac{sinx}{3}}

\implies\displaystyle\tt{lim_x\to0 \: \: \dfrac{sinx}{3}}

\implies\displaystyle\tt{lim_x\to0 \: \: \dfrac{sin0\degree}{3}}

\implies\displaystyle\tt{lim_x\to0 \: \: \dfrac{1}{3}}

\divideontimes\boxed{\displaystyle\bf{lim_x\to0 \: \ggg\dfrac{1}{3} \: is\: the\: \:correct\: answer}}

Similar questions