Math, asked by Shivanshj, 1 year ago

limit x tends to 0 (ln sin3x / ln sinx) equals to

Attachments:

Answers

Answered by Anonymous
10
this is ur required result
Attachments:
Answered by boffeemadrid
8

Answer:


Step-by-step explanation:

The given equation is:

\lim_{x\rightarrow 0}\frac{ln(sin3x)}{ln(sinx)}

Applying the L'hospital rule, we get

=\lim_{x\rightarrow 0}\frac{\frac{1}{sinx}{\times}cos3x{\times}3}{\frac{1}{sinx}{\times}cosx{\times}1}

=\lim_{x\rightarrow 0}\frac{3cos3xsinx}{cosxsin3x}

Again Applying the L'hospital rule, we get

=\lim_{x\rightarrow 0}\frac{3(cos3xcosx-sinxsin3x)}{3cosxcos3x-sinxsin3x}

=\frac{3(1-0)}{3(1)}=1

Similar questions