Math, asked by xyz968, 5 months ago

limit x tends to 0 (sin^2ax)/(sin^2bx)​

Answers

Answered by Anonymous
8

Given Expression,

 \displaystyle \sf \lim_{x \to \: 0} \:  \dfrac{ {sin}^{2}ax }{ {sin}^{2} bx}

Multiplying and dividing by (ax)² in numerator and (bx)² in denominator,

 \implies \displaystyle \sf \lim_{x \to \: 0} \:  \dfrac{(ax) {}^{2}  {sin}^{2}ax }{(ax) {}^{2} }   \times \dfrac{(bx) {}^{2} }{ {sin}^{2}bx(bx) {}^{2}  }  \\  \\  \implies \displaystyle \sf  {a}^{2} {x}^{2}  \lim_{x \to \: 0} \:  \dfrac{  {sin}^{2}ax }{(ax) {}^{2} }   \times  \dfrac{1}{ {b}^{2}  {x}^{2} } \lim_{x \to \: 0}\dfrac{(bx) {}^{2} }{ {sin}^{2}bx}  \\  \\ \implies \displaystyle \sf  {a}^{2} {x}^{2}  \lim_{x \to \: 0} \:  \dfrac{  {sin \: }^{}ax }{(ax) {}^{} }  \times\lim_{x \to \: 0} \:  \dfrac{  {sin \: }^{}ax }{(ax) {}^{} } \times  \dfrac{1}{ {b}^{2}  {x}^{2} } \lim_{x \to \: 0}\dfrac{(bx) {}^{} }{ {sin}^{ \: }bx} \times \lim_{x \to \: 0}\dfrac{(bx) {}^{} }{ {sin}^{ \: }bx} \\  \\  \implies \sf \: \dfrac{a {}^{2}  { {x}^{2}} }{ {b}^{2} {x}^{2}  }  \times 1 \\  \\  \implies \sf \: \dfrac{a {}^{2}  { } }{ {b}^{2}  }

The value of the above expression at x tends to 0 is a²/b².

Similar questions