Math, asked by nikks876, 1 year ago

Limit x tends to 0
 sin {x}^{0} \div  {x}^{0}

Answers

Answered by brunoconti
0

Answer:

Step-by-step explanation:

Attachments:
Answered by Anonymous
3
  • Solution:-

 \tt \: lim_{x \to 0} \:  \:  \frac{ \sin(x)^0  }{ {x}^{0} }   \\  \\  \tt \: lim_{x \to 0} \:  \:  (\frac{ \sin(x) }{x})^0 \\  \\ \tt \:  =  \:  \: 1^0 \\  \\  \tt \:  =  \:  \: 1 \: is \: answer. \\  \\  \\   \\   \\  \tt \red { \bf{ \odot Explanation}} \\  \\  \tt \: lim_{x \to 0}  \:  \:  \frac{ \sin( \theta) }{ \theta}  = 1. \\  \\  \tt \: where \:  \theta  \: \: is \: measued  \: \: in  \: \: radian.

________________________

More information :-

1) lim x -> 0 (θ/sinθ) = 1

2) lim x->0 (tanθ/θ) = 1

3) lim x->0 (θ/tanθ) = 1

4) lim x->0 (sin pθ/pθ) = 1

......(p constant)

5) lim x->0 (tan pθ/pθ) = 1

.......(p constant)

6) lim x->0 (pθ/sin pθ) = 1

.......(p constant)

7) lim x->0 (pθ/tan pθ) = 1

......(p constant)

Similar questions