Math, asked by sourashish2002, 1 year ago

limit x tends to 1
[(x-2/x^2-x)-1/x^3-3x^2+2x)]

Answers

Answered by MaheswariS
22

\textbf{Given:}

\displaystyle\lim_{x\to\;1}[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}]

\textbf{To find:}

\text{The value of $\displaystyle\lim_{x\to\;1}[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}]$}

\textbf{Solution:}

\text{Consider,}

\displaystyle\lim_{x\to\;1}[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}]

=\displaystyle\lim_{x\to\;1}[\dfrac{x-2}{x(x-1)}-\dfrac{1}{x(x^2-3x+2)}]

=\displaystyle\lim_{x\to\;1}[\dfrac{x-2}{x(x-1)}-\dfrac{1}{x(x-1)(x-2)}]

=\displaystyle\lim_{x\to\;1}\dfrac{1}{x(x-1)}[x-2-\dfrac{1}{x-2}]

=\displaystyle\lim_{x\to\;1}\dfrac{1}{x(x-1)}[\dfrac{(x-2)^2-1}{x-2}]

=\displaystyle\lim_{x\to\;1}\dfrac{1}{x(x-1)}[\dfrac{x^2-4x+4-1}{x-2}]

=\displaystyle\lim_{x\to\;1}\dfrac{1}{x(x-1)}[\dfrac{x^2-4x+3}{x-2}]

=\displaystyle\lim_{x\to\;1}\dfrac{1}{x(x-1)}[\dfrac{(x-1)(x-3)}{x-2}]

=\displaystyle\lim_{x\to\;1}\dfrac{1}{x}[\dfrac{x-3}{x-2}]

=\displaystyle\lim_{x\to\;1}\;\dfrac{x-3}{x(x-2)}

=\displaystyle\dfrac{\lim_{x\to\;1}\;(x-3)}{\lim_{x\to\;1}\;x(x-2)}

=\dfrac{1-3}{1(1-2)}

=\dfrac{-2}{-1}

=2

\therefore\bf\,\displaystyle\lim_{x\to\;1}[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}]=2

Find more:

Lim. 8x³-1 / 16x4-1

x--->1/2

https://brainly.in/question/6423235

Lt x=0 (cos7X-cos9X)/(cosX-cos5X)

https://brainly.in/question/6057974

If f(2)=4 and f'(2)=1, then find lim x tends to 2 xf(2)-2f(x)/x-2

https://brainly.in/question/5808208

Answered by chauhanaaditya235
17

Answer:

thanks thanks thanks thanks thanks thanks thanks thanks thanks thanks thanks thanks thanks thanks thanks thanks

Attachments:
Similar questions