Math, asked by Chiddumundla5587, 1 day ago

limit x tends to 2 x(x^2-4)/x^-5x+6

Answers

Answered by anindyaadhikari13
5

S O L U T I O N:

Given Limit:

\displaystyle \rm =\lim_{x\to2} \dfrac{x(x^{2}-4)}{x^{2}-5x+6}

If we put x = 2, we get:

\displaystyle \rm = \dfrac{2\times(4-4)}{2^{2}-5\times2+6}

\displaystyle \rm = \dfrac{2\times 0}{4-10+6}

\displaystyle \rm = \dfrac{0}{0}

Which is an indeterminate form.

Lets do some modifications to solve it.

Given Limit:

\displaystyle \rm =\lim_{x\to2} \dfrac{x(x^{2}-4)}{x^{2}-5x+6}

Can be written as:

\displaystyle \rm =\lim_{x\to2} \dfrac{x(x+2)(x-2)}{(x-2)(x-3)}

\displaystyle \rm =\lim_{x\to2} \dfrac{x(x+2)}{x-3}

\displaystyle \rm =\dfrac{2\times(2+2)}{2-3}

\displaystyle \rm =\dfrac{2\times4}{-1}

\rm=-8

Therefore:

\displaystyle \rm\longrightarrow\lim_{x\to2} \dfrac{x(x^{2}-4)}{x^{2}-5x+6}=-8

⊕ Which is our required answer.

L E A R N  M O R E:

 \displaystyle \rm1. \: \: \lim_{x \to0} \sin(x) = 0

 \displaystyle \rm2. \: \: \lim_{x \to0} \cos(x) = 1

 \displaystyle \rm3. \: \: \lim_{x \to0} \dfrac{ \sin(x) }{x} = 1

 \displaystyle \rm4. \: \: \lim_{x \to0} \dfrac{ \tan(x) }{x} = 1

 \displaystyle \rm5. \: \: \lim_{x \to0} \dfrac{1 - \cos(x) }{x} = 1

 \displaystyle \rm6. \: \: \lim_{x \to0} \dfrac{ \sin^{ - 1} (x) }{x} = 1

 \displaystyle \rm7. \: \: \lim_{x \to0} \dfrac{ \tan^{ - 1} (x) }{x} = 1

 \displaystyle \rm8. \: \: \lim_{x \to0} \dfrac{ {e}^{x} - 1 }{x} = 1

 \displaystyle \rm9. \: \: \lim_{x \to0} \dfrac{ {a}^{x} - 1 }{x} = \ln(a)

 \displaystyle \rm10. \: \: \lim_{x \to0} \dfrac{ \log(1 + x) }{x} = 1

Similar questions