Math, asked by gigijacob90, 6 months ago

limit X tends to 2 x3-8/x2-4​

Answers

Answered by shadowsabers03
7

Given to find,

\displaystyle\longrightarrow L=\lim_{x\to2}\dfrac{x^3-8}{x^2-4}

or,

\displaystyle\longrightarrow L=\lim_{x\to2}\dfrac{x^3-2^3}{x^2-2^2}

We know that,

  • a^3-b^3=(a-b)(a^2+ab+b^2)
  • a^2-b^2=(a-b)(a+b)

Thus, factorising numerator and denominator each we get,

\displaystyle\longrightarrow L=\lim_{x\to2}\dfrac{(x-2)(x^2+2x+2^2)}{(x-2)(x+2)}

\displaystyle\longrightarrow L=\lim_{x\to2}\dfrac{x^2+2x+4}{x+2}

Putting x=2,

\displaystyle\longrightarrow L=\dfrac{2^2+2\times2+4}{2+2}

\displaystyle\longrightarrow L=\dfrac{12}{4}

\displaystyle\longrightarrow\underline{\underline{L=3}}

Hence 3 is the answer.

Answered by Dakshkumararora16
0

Answer:

3

Step-by-step explanation:

LIM x tends to 3

  \frac{ {x}^{3} - 8 } { {x}^{2}  - 4}

- = (a-b) (a²ab+)

LIM X tends to 3

 \frac{(x - 2)( {x}^{2}  + 2x + 4)}{(x - 2)(x + 2)}

LIM x tends to 3

 \frac{( {x}^{2}  + 2x + 4)}{(x + 2)}

Now put x as 3

We get

 \frac{4 + 4 + 4}{4}

Ans = 3

Similar questions