Math, asked by vrindashukla, 7 hours ago

limit x tends to 3 logx - log3/x-3​

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{x \to 3}\rm  \frac{logx - log3}{x - 3}

If we substitute directly x = 3, we get

\rm \:  =  \: \dfrac{log3 - log3}{3 - 3}

\rm \:  =  \: \dfrac{0}{0}

which is indeterminant form.

So, Consider again

\rm :\longmapsto\:\displaystyle\lim_{x \to 3}\rm  \frac{logx - log3}{x - 3}

To evaluate this limit, we use Method of Substitution.

So, Substitute

\red{\rm :\longmapsto\:x = 3 + h, \:  \: as \: x \:  \to \: 3 \:  \: so \:  \: h \:  \to \: 0}

So, above expression can be rewritten as

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  \frac{log(3 + h) - log3}{3 + h - 3}

We know,

\boxed{\tt{ logx - logy = log \frac{x}{y} \: }} \\

So, using this, we get

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  \frac{log\bigg[\dfrac{3 + h}{3} \bigg]}{h}

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  \frac{log\bigg[1 + \dfrac{h}{3} \bigg]}{h}

can be rewritten as

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  \frac{log\bigg[1 + \dfrac{h}{3} \bigg]}{\dfrac{h}{3} \times 3 }

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  \frac{log\bigg[1 + \dfrac{h}{3} \bigg]}{\dfrac{h}{3}}  \times \displaystyle\lim_{h \to 0}\rm  \frac{1}{3}  \\

We know,

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x} = 1 \: }} \\

So, using this identity, we get

\rm \:  =  \: 1 \times \dfrac{1}{3}

\rm \:  =  \: \dfrac{1}{3}

Hence,

\rm\implies \:\:\boxed{\tt{ \displaystyle\lim_{x \to 3}\rm  \frac{logx - log3}{x - 3}  =  \frac{1}{3}}} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x} = 1 \: }} \\

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x} = 1 \: }} \\

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {e}^{x}  - 1}{x} = 1 \: }} \\

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x}  - 1}{x} = loga \: }} \\

Answered by OoAryanKingoO78
14

Answer:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{x \to 3}\rm  \frac{logx - log3}{x - 3}

If we substitute directly x = 3, we get

\rm \:  =  \: \dfrac{log3 - log3}{3 - 3}

\rm \:  =  \: \dfrac{0}{0}

which is indeterminant form.

So, Consider again

\rm :\longmapsto\:\displaystyle\lim_{x \to 3}\rm  \frac{logx - log3}{x - 3}

To evaluate this limit, we use Method of Substitution.

So, Substitute

\red{\rm :\longmapsto\:x = 3 + h, \:  \: as \: x \:  \to \: 3 \:  \: so \:  \: h \:  \to \: 0}

So, above expression can be rewritten as

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  \frac{log(3 + h) - log3}{3 + h - 3}

We know,

\boxed{\tt{ logx - logy = log \frac{x}{y} \: }} \\

So, using this, we get

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  \frac{log\bigg[\dfrac{3 + h}{3} \bigg]}{h}

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  \frac{log\bigg[1 + \dfrac{h}{3} \bigg]}{h}

can be rewritten as

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  \frac{log\bigg[1 + \dfrac{h}{3} \bigg]}{\dfrac{h}{3} \times 3 }

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  \frac{log\bigg[1 + \dfrac{h}{3} \bigg]}{\dfrac{h}{3}}  \times \displaystyle\lim_{h \to 0}\rm  \frac{1}{3}  \\

We know,

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x} = 1 \: }} \\

So, using this identity, we get

\rm \:  =  \: 1 \times \dfrac{1}{3}

\rm \:  =  \: \dfrac{1}{3}

Hence,

\rm\implies \:\:\boxed{\tt{ \displaystyle\lim_{x \to 3}\rm  \frac{logx - log3}{x - 3}  =  \frac{1}{3}}} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x} = 1 \: }} \\

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x} = 1 \: }} \\

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {e}^{x}  - 1}{x} = 1 \: }} \\

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x}  - 1}{x} = loga \: }} \\

Similar questions