Math, asked by akash576389, 5 months ago

limit x tends to 3 x-3 by square root of x-2 - square root of 4-x

Attachments:

Answers

Answered by amansharma264
12

EXPLANATION.

 \sf \implies \:  lim \: _{x \to \: 3} \:  =  \dfrac{x \:  -  \: 3}{ \sqrt{x - 2}  -  \sqrt{4 - x} }

 \sf \implies \: put \: the \: value \: of \: x \:  = 3 \: in \: equation \\  \\ \sf \implies \:  \frac{3 - 3}{ \sqrt{3 - 2} -  \sqrt{4 - 3}  }  \\  \\\sf \implies \:  \frac{0}{ \sqrt{1}  -  \sqrt{1} }   \\  \\ \sf \implies \: it \: is \: in \: the \: form \: of \:  \frac{0}{0}

\sf \implies \: if \: root \: \: is \: in \: equation \: we \: can \:  \: simply \:  \: rationalise \\  \\ \sf \implies \:  lim_{x \to \: 3} \:  \frac{x - 3}{ \sqrt{x - 2}  -  \sqrt{4 - x} }  \:  \times  \:  \frac{ \sqrt{x - 2}  +  \sqrt{4 - x} }{ \sqrt{x - 2}  +  \sqrt{4 - x} }  \\  \\ \sf \implies \:  lim_{x \to \: 3} \:  =  \frac{(x - 3)( \sqrt{x - 2}  +  \sqrt{4 - x} )}{( \sqrt{x - 2}) {}^{2}   - ( \sqrt{4 - x} ) {}^{2} }  \\  \\ \sf \implies \:   \lim_{x \to \: 3} \:  =  \frac{(x - 3)( \sqrt{x - 2} +  \sqrt{4 - x}) }{(x - 2 - (4 - x))}

\sf \implies \:   \lim_{x \:  \to \: 3} \:  =  \dfrac{(x + 3)( \sqrt{x - 2}  +  \sqrt{4 - x} )}{x - 2 - 4 + x}  \\  \\ \sf \implies \:   \lim_{x \:  \to \: 3} \:  =  \frac{(x - 3)( \sqrt{x - 2}  +  \sqrt{4 - x} )}{2x - 6} \\  \\ \sf \implies \:   \lim_{x \:  \to \: 3} \:  =  \frac{(x - 3)( \sqrt{x - 2}  +  \sqrt{4 - x} )}{2(x - 3)}

\sf \implies \:   \lim_{x \:  \to \: 3} \:  =  \dfrac{ \sqrt{x - 2}   +  \sqrt{4 - x} }{2} \\  \\  \sf \implies \: put \: the \: value \: of \: x = 3 \:  \\ \\ \sf \implies \:    \lim_{x \:  \to \: 3} \:  =  \frac{ \sqrt{3 - 2}  +  \sqrt{4 - 3} }{2} \\  \\ \sf \implies \:   \lim_{x \:  \to \: 3} \:  =  \frac{1}{2}    = answer

Similar questions