Math, asked by sajalnimje2002, 10 months ago

limit x tends to π/4 [(√2-cos x-sin x)/(4x-π)^2]
evaluate the above limit​

Attachments:

Answers

Answered by ITzBrainlyGuy
5

Answer

Using L'Hopital's rule

L'HOPITAL'S rule

Since evaluating the limits of numerator and denominator would result in an intermediate form.

 \lim_{x→ \frac{\pi}{4} }( \frac{ \frac{dx}{dy}( \sqrt{2}   -  \cos(x) -  \sin(x)  )}{ \frac{dx}{dy}  {(4x - \pi)}^{2} } )

Calculate the derivatives

 \lim_{x→ \frac{\pi}{4} }( \frac{ \sin(x) -  \cos(x)  }{32x - 8\pi} )

Use L'Hopital's rule

 \lim_{x→ \frac{\pi}{4} }( \frac{ \frac{ dx}{ dy}( \sin(x)  -  \cos(x) ) }{ \frac{dx}{dy} (32x - 8\pi)} )

Calculate the derivatives

 \lim_{x→ \frac{\pi}{4} }( \frac{ \cos(x)  +  \sin(x) }{32} )

Evaluate the limit

 =  \frac{ \cos( \frac{ {\pi}^{c} }{4} )  +  \sin( \frac{ {\pi}^{c} }{4} ) }{32}

We know that

 \frac{ {\pi}^{c} }{4}  = 45°

 =  \frac{ \cos(45°) +  \sin(45°)  }{32}

Using

cos45° = 1/√2

sin45° = 1/√2

 =  \frac{ \frac{1}{ \sqrt{2}   }  + \frac{1}{ \sqrt{2} }  }{32}

 =  \frac{ \frac{ \sqrt{2}  +  \sqrt{2} }{ \sqrt{4} } }{32}

 =  \frac{ \frac{2 \sqrt{2} }{2} }{32}

 =  \dfrac{ \sqrt{2} }{32}

Similar questions