Math, asked by lilly12, 5 months ago

limit x tends to π/4
sinx- cos x/π/4-x​

Answers

Answered by Anonymous
19

Solution :

We have to evaluate

\sf\lim _{x\to\dfrac{\pi}{4}}\:\dfrac{\sin\:x-\cos\:x}{\frac{\pi}{4}-x}

Since 0/0 is of indeterminate form.

Then ,apply L'Hospital's Rule.

\sf\lim _{x\:\to\dfrac{\pi}{4}}\:\dfrac{\sin\:x-\cos\:x}{\frac{\pi}{4}-x} =\lim _{x\:\to\dfrac{\pi}{4}} \dfrac{\frac{d(\sin(x)}{dx}  - \frac{\cos(x)}{dx}}{ \frac{d(\frac{\pi}{4})}{dx} - \frac{dx}{dx}}

\sf=\lim_{x\:\to\dfrac{\pi}{4}}\:\dfrac{\cos\:x-(-\sin\:x)}{1}

\sf=\lim_{x\:\to\dfrac{\pi}{4}}\:\cos\:x+\sin\:x

Now put the value of limit, then

\sf=\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}

\sf=\dfrac{2}{\sqrt{2}}

\sf=\sqrt{2}

_____________________

About L'HOSPITAL'S Rule :

If f(a)=g(a)= 0 , then

 \sf \lim _{x \to \: a} \:  \frac{f(x)}{g(x)}  =  \sf \lim _{x \to \: a} \frac{f'(x)}{g'(x)}

Similar questions