Math, asked by aswathi702, 6 months ago

limit x tends to 5 (e^x-e^5)/x-5​

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 = \lim_{x \rarr5} \frac{5( {e}^{x}   -  {e}^{5} )}{x - 5}  \\

 = \lim_{x \rarr5} \frac{5 {e}^{5} ( {e}^{x - 5}  - 1)}{x - 5}  \\

 =5 {e}^{5}  \lim_{(x - 5) \rarr0} \frac{ {e}^{x - 5} - 1 }{x - 5}  \\

 = 5 {e}^{5}

Similar questions