Math, asked by nehalgumble, 4 months ago

Limit x tends to 5 sqrt(x+4) -3 / sqrt(3x-11-2)

Attachments:

Answers

Answered by muskanrangari12
0

Step-by-step explanation:

limit x tends to 5 underroot ( x+4 ) -3 / under root ( 3 x -11-2

Answered by sushmadhkl
0

Here:

To find\lim_{x \to \inft5} (\sqrt{x+4} -3 /\sqrt{3x-11-2})

Solution:

\lim_{x \to \inft5} (\sqrt{x+4} -3 /\sqrt{3x-11-2})

\lim_{x \to \inft5}\sqrt{x+4}}-3/\sqrt{3x-9-2-2}

\lim_{x \to \inft5} \sqrt{x+4} -3/\sqrt{3}(\sqrt{x-3} )-\sqrt{4}

\lim_{x \to \inft5}(\sqrt{x+4} -3)/\sqrt{3}(\sqrt{x-3})-2\  * \sqrt{3} (\sqrt{x-3} +2/\sqrt{3} (\sqrt{x-3} +2

\lim_{x \to \inft5}\sqrt{x+4} *\sqrt{3x-9} +2(\sqrt{x+4})-3(\sqrt{3x-9} )-6/3(x-3)-4

\lim_{x \to \inft5}  3\sqrt{6} +2\sqrt{9} -3\sqrt{6} -6/2

\lim_{x \to \inft5} 6-6/2

=0

Therefore, \lim_{x \to \inft5} (\sqrt{x+4}-3/\sqrt{3x-11-2}  =0.

Similar questions