Math, asked by ytshort222277, 8 days ago

limit x tends to a where x to the power -5 -a to the power -5 divided by x to the power -7 -a to the power -7

Answers

Answered by mathdude500
5

Given Question :-

Evaluate the following limit

\rm \: \displaystyle\lim_{x \to a}\rm \:  \dfrac{ {x}^{ - 5}  -  {a}^{ - 5} }{ {x}^{ - 7}  -  {a}^{ - 7}}  \\

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \displaystyle\lim_{x \to a}\rm \:  \dfrac{ {x}^{ - 5}  -  {a}^{ - 5} }{ {x}^{ - 7}  -  {a}^{ - 7}}  \\

If we substitute directly x = a, we get

\rm \:   =  \: \dfrac{ {a}^{ - 5}  -  {a}^{ - 5}}{ {a}^{ - 7}  -  {a}^{ - 7}}

\rm \:  =  \: \dfrac{0}{0}  \\

which is indeterminant form.

So, Consider again

\rm \: \displaystyle\lim_{x \to a}\rm \:  \dfrac{ {x}^{ - 5}  -  {a}^{ - 5} }{ {x}^{ - 7}  -  {a}^{ - 7}}  \\

Divide numerator and denominator by x - a, we get

 \rm \:  =  \: \displaystyle\lim_{x \to a}\rm \dfrac{ \dfrac{ {x}^{ - 5}  -  {a}^{ - 5}}{x - a} }{  \:  \: \dfrac{ {x}^{ - 7}  -  {a}^{ - 7}}{x - a} \:  \:  }  \\

can be further rewritten as

 \rm \:  =  \: \dfrac{\displaystyle\lim_{x \to a}\rm  \:  \frac{ {x}^{ - 5}  -  {a}^{ - 5}}{x - a} }{\displaystyle\lim_{x \to a}\rm   \: \frac{ {x}^{ - 7}  -  {a}^{ - 7}}{x - a} }  \\

We know,

\boxed{\rm{  \:\displaystyle\lim_{x \to a}\rm  \frac{ {x}^{n}  -  {a}^{n} }{x - a}  =  {na}^{n - 1} \:  \: }} \\

So, using this result, we get

 \rm \:  =  \: \dfrac{ - 5 {a}^{ - 5 - 1} }{ - 7 {a}^{ - 7 - 1} }  \\

 \rm \:  =  \: \dfrac{5 {a}^{ - 6} }{7 {a}^{ - 8} }  \\

 \rm \:  =  \: \dfrac{5}{7} {a}^{2}   \\

Hence,

\rm\implies \:\boxed{\rm{  \:\rm \: \displaystyle\lim_{x \to a}\rm \:  \dfrac{ {x}^{ - 5}  -  {a}^{ - 5} }{ {x}^{ - 7}  -  {a}^{ - 7}} =  \frac{5}{7} {a}^{2} \:  \: }}   \\

\rule{190pt}{2pt}

Additional Information :-

\boxed{\rm{  \:\displaystyle\lim_{x \to 0}\rm  \:  \frac{sinx}{x} \:  =  \: 1 \: }} \\

\boxed{\rm{  \:\displaystyle\lim_{x \to 0}\rm  \:  \frac{tanx}{x} \:  =  \: 1 \: }} \\

\boxed{\rm{  \:\displaystyle\lim_{x \to 0}\rm  \:  \frac{log(1 + x)}{x} \:  =  \: 1 \: }} \\

\boxed{\rm{  \:\displaystyle\lim_{x \to 0}\rm  \:  \frac{ {e}^{x} - 1}{x} \:  =  \: 1 \: }} \\

\boxed{\rm{  \:\displaystyle\lim_{x \to 0}\rm  \:  \frac{ {a}^{x} - 1}{x} \:  =  \: loga \: }} \\

Similar questions