Math, asked by piyush4586, 9 months ago

limit x tends to a x^m-a^m/x^n-a^n​

Answers

Answered by pulakmath007
9

SOLUTION

TO EVALUATE

\displaystyle \lim_{x \to a} \:  \frac{ {x}^{m}  -  {a}^{m} }{ {x}^{n}  -  {a}^{n} }

FORMULA TO BE IMPLEMENTED

We are aware of the formula that

\displaystyle \lim_{x \to a} \:  \frac{{x}^{m}  -  {a}^{m} }{x - a}  = m \:  \times  {a}^{m - 1}

EVALUATION

\displaystyle \lim_{x \to a} \:  \frac{ {x}^{m}  -  {a}^{m} }{ {x}^{n}  -  {a}^{n} }

\displaystyle  =  \:  \frac{ \displaystyle \lim_{x \to a} \:  \frac{{x}^{m}  -  {a}^{m} }{x - a} }{ \displaystyle \lim_{x \to a} \:  \frac{{x}^{n}  -  {a}^{n} }{x - a}}

\displaystyle  =  \:   \frac{m \:  \times  {a}^{m - 1} }{n \times  {a}^{n - 1} }

\displaystyle  =  \:   \frac{m \:  \times  {a}^{(m - 1 - n + 1)} }{n  }

\displaystyle  =  \:   \frac{m \:  \times  {a}^{(m - n )} }{n  }

\displaystyle  =  \:   \frac{m } {n  }  \times   {a}^{(m - n )}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. the value of limited x to 0 sin7x+sin5x÷tan5x-tan2x is

https://brainly.in/question/28582236

2. Lim x→0 (log 1+8x)/x

https://brainly.in/question/18998465

Similar questions