Math, asked by spoorthi3717, 3 months ago

limit x tends to infinity ​

Attachments:

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

\rm :\longmapsto\: \displaystyle \lim_{ \bf \: x \to \:  \infty } \sf \: \dfrac{(2x + 3)(3x + 5)}{(4x + 1)(5x - 2)}

\rm \:  \:  =  \:  \: \: \displaystyle \lim_{ \bf \: x \to \:  \infty } \sf \: \dfrac{ \cancel{x}\bigg(2 + \dfrac{3}{x} \bigg) \:\cancel x\bigg(3 + \dfrac{5}{x} \bigg)}{\cancel{x}\bigg(4 + \dfrac{1}{x} \bigg) \:\cancel x\bigg(5 -  \dfrac{2}{x} \bigg)}

\rm \:  \:  =  \:  \: \dfrac{(2  +  0)(3 + 0)}{(4 + 0)(5 - 0)}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \:\rm :\longmapsto\: \displaystyle \lim_{ \bf \: x \to \:  \infty } \sf \:\dfrac{1}{x}  = 0\bigg \}}

\rm \:  \:  =  \:  \: \dfrac{2 \times 3}{4 \times 5}

\rm \:  \:  =  \:  \: \dfrac{3}{10}

Hence,

\rm :\longmapsto\: \displaystyle \lim_{ \bf \: x \to \:  \infty } \bf \: \dfrac{(2x + 3)(3x + 5)}{(4x + 1)(5x - 2)}  =  \dfrac{3}{10}

Additional Information :-

\rm :\longmapsto\: \displaystyle \lim_{ \bf \: x \to \: 0} \sf \: \dfrac{ log(1 + x) }{x}  = 1

\rm :\longmapsto\: \displaystyle \lim_{ \bf \: x \to \: 0} \sf \: \dfrac{sinx }{x}  = 1

\rm :\longmapsto\: \displaystyle \lim_{ \bf \: x \to \: 0} \sf \: \dfrac{tanx }{x}  = 1

\rm :\longmapsto\: \displaystyle \lim_{ \bf \: x \to \: 0} \sf \: \dfrac{{sin}^{ - 1} x}{x}  = 1

\rm :\longmapsto\: \displaystyle \lim_{ \bf \: x \to \: 0} \sf \: \dfrac{{tan}^{ - 1} x}{x}  = 1

\rm :\longmapsto\: \displaystyle \lim_{ \bf \: x \to \: 0} \sf \: \dfrac{{e}^{x}  - 1}{x}  = 1

\rm :\longmapsto\: \displaystyle \lim_{ \bf \: x \to \: 0} \sf \: \dfrac{{a}^{x}  - 1}{x}  =  log(a)

Similar questions