Math, asked by baberanaaz, 5 months ago

Limit x tends to infinity
Root x^2+x+1 - root x^2+x-1

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \lim_{x \rarr \infty }  \sqrt{ {x}^{2} + x + 1 }  -   \sqrt{ {x}^{2}  + x - 1 }  \\

 =  \lim_{x \rarr \infty } \frac{( \sqrt{ {x}^{2}  + x + 1} -  \sqrt{ {x}^{2}  + x - 1}  )( \sqrt{ {x}^{2} + x - 1 } +  \sqrt{ {x}^{2} + x - 1 }  )}{( \sqrt{ {x}^{2} + x + 1 }  +   \sqrt{ {x}^{2} + x - 1 } ) }  \\

 =  \lim_{x \rarr \infty } \frac{ {x}^{2} + x + 1 -  {x}^{2} - x + 1  }{ \sqrt{ {x}^{2} + x + 1 }  +  \sqrt{ {x}^{2} + x - 1 } }  \\

 =  \lim_{x \rarr \infty } \frac{1}{ \sqrt{ {x}^{2} + x + 1 }  +  \sqrt{ {x}^{2} + x - 1 } }  \\

 = 0

Similar questions