Math, asked by rabindrapanda, 1 year ago

limit X tends to pi by 4 sin x minus cos x by x minus 5 by 4 equals to

Answers

Answered by MaheswariS
14

Solution:


Result used:

\lim_{\theta\to\:0}\frac{sin\theta}{\theta}=1

\lim_{x\to\frac{\pi}{4}}\frac{sinx-cosx}{x-\frac{\pi}{4}}

=\lim_{x\to\frac{\pi}{4}}\sqrt2[\frac{sinx\frac{1}{\sqrt2}-cosx\frac{1}{\sqrt2}}{x-\frac{\pi}{4}}]

=\lim_{x\to\frac{\pi}{4}}\sqrt2[\frac{sinx.cos\frac{\pi}{4}-cosx.sin\frac{\pi}{4}}{x-\frac{\pi}{4}}]

=\lim_{x\to\frac{\pi}{4}}\sqrt2[\frac{sin(x-\frac{\pi}{4})}{x-\frac{\pi}{4}}]

take t=x-\frac{\pi}{4}


as {x\to\frac{\pi}{4}}, {t\to\:0}

=\sqrt{2}\lim_{t\to\:0}\frac{sint}{t}\\=\sqrt{2}.1\\=\sqrt{2}


Similar questions