Math, asked by sravanbaja, 10 months ago

limit x tends to zero 1-coss/sin3x into tan2x​

Answers

Answered by BrainlyPopularman
5

Question :

 \\ \displaystyle\sf   \:  \: solve : \lim_{x\:\rightarrow\:0} \left[ \frac{1 -  \cos(x) }{ \sin(3x)  }  \times \tan(2x)  \right] \: \\

ANSWER :–

 \\ \displaystyle\sf \: \:  =  \lim_{x\:\rightarrow\:0} \left[ \frac{1 - \cos(x) }{ \sin(3x) } \times \tan(2x) \right] \: \\

• We should write this as –

 \\ \displaystyle\sf \: \:  =  \lim_{x\:\rightarrow\:0} \left[ \frac{1 - \cos(x) }{3x} \times  \dfrac{3x}{ \sin(3x) } \times  \dfrac{\tan(2x)}{2x} \times 2x \right] \: \\

• We know that –

 \\  \displaystyle\sf \: \:   \implies { \boxed{ \lim_{x\:\rightarrow\:0} \left[ \frac{ \sin(x) }{x}  \right] = 1 \:  \:  \: and \:  \:  \lim_{x\:\rightarrow\:0} \left[ \frac{ \tan(x) }{x}  \right] = 1  }}\\

• So that –

 \\ \displaystyle\sf \: \:  =  \lim_{x\:\rightarrow\:0} \left[ \frac{1 - \cos(x) }{3 \cancel x} \times  1 \times  1 \times 2 \cancel x \right] \: \\

 \\ \displaystyle\sf \: \:  =  \lim_{x\:\rightarrow\:0} \left[ \frac{1 - \cos(x) }{3 }  \times 2  \right] \: \\

• Now Applying limits –

 \\ \displaystyle\sf \: \:  =    \left[ \frac{1 - \cos(0) }{3 }  \times 2  \right] \: \\

 \\ \displaystyle\sf \: \:  =    \left[ \frac{1 - 1 }{3 }  \times 2  \right] \: \:  \:  \:  \: \:  \:  \:  \:  \:  \:  [  \:  \: \because \:  \:  \:  \cos(0)  = 1]\\

 \\ \displaystyle\sf \: \:  =    \left[ \frac{0}{3 }  \times 2  \right] \\

 \\ \displaystyle\sf \: \:  =   0 \\

Hence ,   \displaystyle\sf \: \:   \lim_{x\:\rightarrow\:0} \left[ \frac{1 - \cos(x) }{ \sin(3x) } \times \tan(2x) \right] \:  = 0\\

Similar questions