limit x tends to zero 3^2x-1/2^3x-1
Answers
Answered by
1
Answer:
limx→0(32x−23xx)limx→0(32x−23xx)
=limx→0{(32x−1)−(23x−1)x}=limx→0{(32x−1)−(23x−1)x} =lim
x→032x−1x−limx→023x−1x=limx→032x−1x−limx→023x−1x
=limx→012[32x−1x]−3.[limx→023x−1x]=limx→012[32x−1x]−3.[limx→023x−1x] = 2 ∙
(log 3) − 3(log 2) = log32 − log23 =
log
Similar questions