Math, asked by akarande13089, 6 days ago

Limit X tends to zero e raised to a x - e raise to minus A X upon log 1 + bx

Answers

Answered by mathdude500
4

Question :- Evaluate

\rm \: \displaystyle\lim_{x \to 0}\rm  \:  \frac{ {e}^{ax} - {e}^{ - ax} }{log(1 + bx)}  \\

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \displaystyle\lim_{x \to 0}\rm  \:  \frac{ {e}^{ax} - {e}^{ - ax} }{log(1 + bx)}  \\

If we substitute directly x = 0, we get

\rm \:  =  \: \dfrac{ {e}^{0}  - {e}^{0}}{log1} \\

\rm \: =  \:\dfrac{1 - 1}{0}  \\

\rm \: =  \:\dfrac{0}{0}  \\

which is indeterminant form.

So, Consider again

\rm \: \displaystyle\lim_{x \to 0}\rm  \:  \frac{ {e}^{ax} - {e}^{ - ax} }{log(1 + bx)}  \\

can be rewritten as

\rm \:  =  \: \displaystyle\lim_{x \to 0}\rm \bigg({e}^{ax} - \dfrac{1}{{e}^{ax}} \bigg) \times \displaystyle\lim_{x \to 0}\rm  \frac{1}{log(1 + bx)}

\rm \:  =  \: \displaystyle\lim_{x \to 0}\rm \bigg(\dfrac{{e}^{2ax} - 1}{{e}^{ax}} \bigg) \times \displaystyle\lim_{bx \to 0}\rm  \frac{bx}{log(1 + bx)} \times  \frac{1}{bx}

We know,

\boxed{ \rm{ \:\displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x} = 1 \: }} \\

So, using this, we get

\rm \:  =  \:\displaystyle\lim_{x \to 0}\rm  \frac{1}{{e}^{ax}}  \times  \displaystyle\lim_{x \to 0}\rm \bigg(\dfrac{{e}^{2ax} - 1}{bx} \bigg) \times 1 \\

\rm \:  =  \dfrac{1}{b}  \times \:1 \times  \displaystyle\lim_{ax \to 0}\rm \bigg(\dfrac{{e}^{2ax} - 1}{2ax} \bigg) \times 2a \\

We know,

\boxed{ \rm{ \:\displaystyle\lim_{x \to 0}\rm  \frac{{e}^{x} - 1}{x}  = 1 \: }} \\

So, using this, we get

\rm \:  =  \: \dfrac{1}{b}  \times 1 \times 2a \\

\rm \:  =  \: \dfrac{2a}{b}\\

Hence,

\rm\implies \:\rm \: \displaystyle\lim_{x \to 0}\rm  \:  \frac{ {e}^{ax} - {e}^{ - ax} }{log(1 + bx)} =  \frac{2a}{b}   \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{sinx}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{tanx}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{log(1 + x)}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{ {e}^{x}  - 1}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{ {a}^{x}  - 1}{x} = loga}\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions