Biology, asked by mohantysatrughna3, 11 months ago

limit X tends to zero e raised to X minus 1 whole divided by X is one how​

Answers

Answered by Anonymous
76

 \huge{ \underline{ \underline{ \green{ \sf{ Detailed \: Answer :}}}}}

{\red{\huge{\underline{\mathbb{To \: Prove :-}}}}}

 \star \bold{     \lim_{  \Delta x \to \: 0}( \frac{e{}^{x}  - 1}{ x} )} = 1 \\

{\orange {\huge{\underline{\mathbb{Answer:-}}}}}

We know the expansion of  e^x

{\blue{\boxed{\large{\bold{e{}^{x}= 1+x + \frac{ x{ }^{2} } {2 !} + \frac{x {}^{3} }{3!} +\frac{ x{}^{4} }{4!} .....}}}}}

 \star \bold{     \lim_{  \Delta x \to \: 0}( \frac{e{}^{x}  - 1}{ x} )} \\

Using expansion of  e^x

 \star \bold{     \lim_{  \Delta x \to \: 0}( \frac{(1 + x +   \frac{x {}^{2} }{2!} +  \frac{x {}^{3} }{3!}   +   \frac{x {}^{4} }{4!}  .... ) - 1}{  x} )} \\

 \star \bold{     \lim_{  \Delta x \to \: 0}(  \frac{(1 +( x +  \frac{x {}^{2} }{2!} +  \frac{x {}^{3} }{3!}   +   \frac{x {}^{4} }{4!}  .... ) - 1}{x} )} \\

 \star \bold{     \lim_{  \Delta x \to \: 0}( \frac{( x +  \frac{x {}^{2} }{2!} +  \frac{x {}^{3} }{3!}   +   \frac{x {}^{4} }{4!}  .... )}{ x} )} \\

 \star \bold{     \lim_{  \Delta x \to \: 0}( \frac{x +( 1 +  \frac{x {}^{} }{2!} +  \frac{x {}^{2} }{3!}   +   \frac{x {}^{3} }{4!}  .... )}{ x} )} \\

 \star \bold{     \lim_{  \Delta x \to \: 0}( \frac{x }{ x} )} \\

= 1

\huge{\bold{ Hence \: Proved }}

Similar questions