Math, asked by anindadebnath1993, 9 days ago

limit x tends to zero root(1+sin3x)-1/log (1+tan2x).​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\sf \frac{ \sqrt{1 + sin3x}  - 1}{log(1 + tan2x)}

If we substitute directly x = 0, we get

\rm \:  =  \: \dfrac{ \sqrt{1 + sin0}  - 1}{ log(1 + tan0) }

\rm \:  =  \: \dfrac{ \sqrt{1 + 0}  - 1}{ log(1 + 0) }

\rm \:  =  \: \dfrac{ \sqrt{1}  - 1}{ log(1) }

\rm \:  =  \: \dfrac{0}{0}

which is indeterminant form.

So, Consider again

\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\sf \frac{ \sqrt{1 + sin3x}  - 1}{log(1 + tan2x)}

\rm \:  =  \: \displaystyle\lim_{x \to 0}\sf ( \sqrt{1 + sin3x} - 1) \times \displaystyle\lim_{x \to 0}\sf \frac{1}{ log(1 + tan2x) }

On rationalizing the numerator, we get

\rm \:  =  \: \displaystyle\lim_{x \to 0}\sf ( \sqrt{1 + sin3x} - 1) \times  \frac{ \sqrt{1 + sin3x}  + 1}{ \sqrt{1 + sin3x}  + 1} \times \displaystyle\lim_{x \to 0}\sf \frac{tan2x}{ log(1 + tan2x) } \times  \frac{1}{tan2x}

We know,

\red{\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}\sf \frac{ log(1 + x) }{x} = 1 \: }}}

So, using this, we get

\rm \:  =  \: \displaystyle\lim_{x \to 0}\sf \frac{1 + sin3x - 1}{ \sqrt{1 + sin3x}  + 1}  \times \displaystyle\lim_{x \to 0}\sf \frac{1}{tan2x}

\rm \:  =  \: \displaystyle\lim_{x \to 0}\sf \frac{ sin3x }{ \sqrt{1 + sin0}  + 1}  \times \displaystyle\lim_{x \to 0}\sf \frac{1}{tan2x}

\rm \:  =  \: \dfrac{ 1 }{ \sqrt{1 + 0}  + 1}  \times \displaystyle\lim_{x \to 0}\sf \frac{sin3x}{tan2x}

\rm \:  =  \: \dfrac{ 1 }{ \sqrt{1}  + 1}  \times \displaystyle\lim_{x \to 0}\sf \frac{sin3x}{3x} \times 3x \times  \frac{2x}{tan2x} \times  \frac{1}{2x}

\rm \:  =  \: \dfrac{ 1 }{ 1  + 1}  \times \displaystyle\lim_{x \to 0}\sf \frac{sin3x}{3x} \times 3 \times  \frac{2x}{tan2x} \times  \frac{1}{2}

We know

\red{\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}\sf \frac{sinx}{x} = 1 \: }}}

and

\red{\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}\sf \frac{tanx}{x} = 1 \: }}}

So, using these results, we get

\rm \:  =  \: \dfrac{3}{4} \times 1 \times 1

\rm \:  =  \: \dfrac{3}{4}

Hence,

\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}\sf \frac{ \sqrt{1 + sin3x}  - 1}{log(1 + tan2x)} =  \frac{3}{4} \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions