Math, asked by baberanaaz, 3 months ago

Limit x tends to zero
Sin x^2/x sinx
Answer is 1

Attachments:

Answers

Answered by Asterinn
25

\rm \longrightarrow \displaystyle \large\lim_ { \rm \: x \to \:0 }{ \rm \: \dfrac{sin \:  {x}^{2}  }{ x \: sin \: x} }

we know that :-

\rm \boxed{ \displaystyle \large\lim_ { \rm \: x \to \:y }{ \rm \: \dfrac{sin \: y }{ y} = 1 }}

\rm \longrightarrow \displaystyle \large\lim_ { \rm \: x \to \:0 }{ \rm \: \dfrac{ \dfrac{sin \:  {x}^{2}}{ {x}^{2} }  \times  {x}^{2}   }{ x  \times   \dfrac{sin \: x}{x}  \times x} }

\rm \longrightarrow \displaystyle \large\lim_ { \rm \: x \to \:0 }{ \rm \: \dfrac{ 1\times  {x}^{2}   }{ x  \times   1 \times x} }

\rm \longrightarrow \displaystyle \large\lim_ { \rm \: x \to \:0 }{ \rm \: \dfrac{  {x}^{2}   }{  {x}^{2} } }

\rm \longrightarrow 1

Answer : 1

Additional Information :-

d(e^x)/dx = e^x

d(x^n)/dx = n x^(n-1)

d(ln x)/dx = 1/x

d(sin x)/dx = cos x

d(cos x)/dx = - sin x

d(tan x)/dx = sec² x

d(sec x)/dx = tan x * sec x

d(cot x)/dx = - cosec²x

d(cosec x)/dx = - cosec x * cot x

Similar questions