Math, asked by prachipandit32, 1 month ago

limit X tends to zero tanax/tanbx​

Answers

Answered by nikhilbasant007
0

Answer:

Stepvfbvrrfgtyhyjukikitun-by-step explanation:

Answered by jeevankishorbabu9985
1

Answer:

{ \huge{ \tt{ \red{ \lim _ {x \mapsto 0} \:   \frac{\tan(ax)}{  \tan(bx) }}}}}

\huge{{ \mathcal{\huge {\green{answer }}}}  \huge \pink\dashrightarrow  \huge \red{ \frac{a}{b}}}

Step-by-step explanation:

Move the term

{ \red{\huge{ \frac1B}}},outside of the limit because it is constant with respect to x.

{\frac1B\lim_{x→0}tan(Ax)x}

Apply L'Hospital's rule.

 \huge \pink{ \frac1B \lim _ {x→0}A{sec }^{2} (Ax)}

Evaluate the limit.

 \huge \green{ \tt{ \frac{A}{B }{sec }^{2} (A \lim _{ x→0}x)}}

Evaluate the limit of x by plugging in 0 for x.

 \huge \color{grey} \frac{A}{B}{ \sec }^{2} (A⋅0)

Multiply A by 0.

 \huge{  \color{cyan}{\frac{A}{B}{ \sec }^{2} (0)}},The exact value of sec(0) is 1.

 \huge{ \therefore \frac ab \:  \:  \:  \:  is \: t he \: anser}

Similar questions