Math, asked by kutti42, 11 months ago

limit X tends to zero under root 1+x+xsquare -1 by x

Answers

Answered by MaheswariS
5

\underline{\textbf{Given:}}

\mathsf{\displaystyle\lim_{x\to\,0}\;\dfrac{\sqrt{1+x+x^2}-1}{x}}

\underline{\textbf{To evaluate:}}

\mathsf{\displaystyle\lim_{x\to\,0}\;\dfrac{\sqrt{1+x+x^2}-1}{x}}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{\displaystyle\lim_{x\to\,0}\;\dfrac{\sqrt{1+x+x^2}-1}{x}}

\mathsf{=\dfrac{1-1}{0}=\dfrac{0}{0}\;form}

\textsf{Apply L Hopital's rule}

\mathsf{=\displaystyle\lim_{x\to\,0}\;\dfrac{\dfrac{1}{2\sqrt{1+x+x^2}}(1+2x)}{1}}

\mathsf{=\dfrac{\dfrac{1}{2\sqrt{1+0+0^2}}(1+2(0))}{1}}

\mathsf{=\dfrac{1}{2}}

\implies\boxed{\mathsf{\displaystyle\lim_{x\to\,0}\;\dfrac{\sqrt{1+x+x^2}-1}{x}=\dfrac{1}{2}}}

\underline{\textbf{Find more:}}

Lim. 8x³-1 / 16x4-1

x--->1/2

https://brainly.in/question/6423235  

Lt x=0 (cos7X-cos9X)/(cosX-cos5X)

https://brainly.in/question/6057974  

If f(2)=4 and f'(2)=1, then find lim x tends to 2 xf(2)-2f(x)/x-2

https://brainly.in/question/5808208

Answered by pulakmath007
8

SOLUTION

TO DETERMINE

\displaystyle  \sf{\lim_{x \to 0} \:   \frac{ \sqrt{1 + x +  {x}^{2} } - 1 }{x} }

EVALUATION

Here the given limit is

\displaystyle  \sf{\lim_{x \to 0} \:   \frac{ \sqrt{1 + x +  {x}^{2} } - 1 }{x} }

We solve it as below

\displaystyle  \sf{\lim_{x \to 0} \:   \frac{ \sqrt{1 + x +  {x}^{2} } - 1 }{x} }

\displaystyle  \sf{ = \lim_{x \to 0} \:   \frac{( \sqrt{1 + x +  {x}^{2} } - 1)(\sqrt{1 + x +  {x}^{2} }  + 1) }{x(\sqrt{1 + x +  {x}^{2} }  + 1)} }

\displaystyle  \sf{ = \lim_{x \to 0} \:   \frac{{( \sqrt{1 + x +  {x}^{2} })}^{2}  -  {(1)}^{2} }{x(\sqrt{1 + x +  {x}^{2} }  +  1)} }

\displaystyle  \sf{ = \lim_{x \to 0} \:   \frac{(1 + x +  {x}^{2}   -  1) }{x(\sqrt{1 + x +  {x}^{2} }  + 1)} }

\displaystyle  \sf{ = \lim_{x \to 0} \:   \frac{( x +  {x}^{2}   ) }{x(\sqrt{1 + x +  {x}^{2} }  +  1)} }

\displaystyle  \sf{ = \lim_{x \to 0} \:   \frac{x( 1 + x ) }{x(\sqrt{1 + x +  {x}^{2} }  +  1)} }

\displaystyle  \sf{ = \lim_{x \to 0} \:   \frac{( 1 + x ) }{(\sqrt{1 + x +  {x}^{2} }  + 1)} }

\displaystyle  \sf{ = \:   \frac{( 1 + 0 ) }{(\sqrt{1 + 0 +  {0}^{2} }  + 1)} }

\displaystyle  \sf{ = \:   \frac{1}{(\sqrt{1  }  + 1)} }

\displaystyle  \sf{ = \:   \frac{1}{(1 + 1)} }

\displaystyle  \sf{ = \:   \frac{1}{2} }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Lim x--a (f(x) - f(a))/(x-a) gives

https://brainly.in/question/35766042

2. Lim x→0 (log 1+8x)/x

https://brainly.in/question/18998465

Similar questions