Math, asked by raizadabharatbhushan, 6 months ago

limit X tends to zero x square cos x upon 1 minus cos x?​

Answers

Answered by mahakmayani
5

Step-by-step explanation:

mark me as brainliest

Attachments:
Answered by akshay0222
0

Given,

\[f\left( x \right) = \frac{{{x^2}\cos x}}{{1 - \cos x}}\]

Solution,

Formula used,\[{\cos ^2}x + {\sin ^2}x = 1\]

Formula used,\[\mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{x} = 1\]

Apply the formula to the given equation.

\[\begin{array}{l} \Rightarrow f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \frac{{{x^2}\cos x}}{{1 - \cos x}}\\ \Rightarrow f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \frac{{{x^2}\cos x}}{{1 - \cos x}} \times \frac{{1 + \cos x}}{{1 + \cos x}}\\ \Rightarrow f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \frac{{{x^2}\left( {\cos x} \right)\left( {1 + \cos x} \right)}}{{1 - {{\cos }^2}x}}\end{array}\]

Solve further,

\[\begin{array}{l} \Rightarrow f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \frac{{{x^2}\left( {\cos x} \right)\left( {1 + \cos x} \right)}}{{{{\sin }^2}x}}\\ \Rightarrow f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \frac{{{x^2}\left( {\cos x} \right)\left( {1 + \cos x} \right)}}{{\frac{{{{\sin }^2}x}}{{{x^2}}} \times {x^2}}}\end{array}\]

Apply limits.

\[\begin{array}{l} \Rightarrow f\left( x \right) = \frac{{\cos 0^\circ \left( {1 + \cos 0^\circ } \right)}}{1}\\ \Rightarrow f\left( x \right) = \frac{{1\left( {1 + 1} \right)}}{1}\\ \Rightarrow f\left( x \right) = 2\end{array}\]

Hence, the value is \[2.\]

Similar questions