Math, asked by piyusuparepe7bwi, 1 year ago

limit x tends to zero xcos(1/x)

Answers

Answered by brunoconti
1

Answer:

Step-by-step explanation:

Attachments:
Answered by amartya31
4

Answer:

0

Step-by-step explanation:

we  \: know \: that \\     \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: - 1 < cos \frac{1}{x}  < 1 \\   or \:  \:  \:  \:  \:  \:  \:  - x < x \: cos \frac{1}{x }  < x \\ or \: lim \: _{ x - 0}( - x)  <  lim_{ x - 0}(x \: cos \frac{1}{x} )  \:  <  lim_{x - 0}(x)  \\ and \: we \: know \:  lim_{x - 0} \: |x|  \:  = 0 \\ so \:  \:  \: \:  \:  \:   lim_{x - 0}(xcos \frac{1}{x} )  = 0

Similar questions