Math, asked by abhhat4, 1 year ago

limit x tends to2 x^3-6x^2+11x-6/x^2-6x+8

Answers

Answered by MaheswariS
19

Answer:

\bf\lim_{x\to2}\;\frac{x^3-6x^2+11x-6}{x^2-6x+8}=\frac{1}{2}

Step-by-step explanation:

\lim_{x\to2}\;\frac{x^3-6x^2+11x-6}{x^2-6x+8}

Factorizing both numerator and denominator, we get

=\lim_{x\to2}\;\frac{(x-1)(x^2-5x+6)}{(x-2)(x-4)}

=\lim_{x\to2}\;\frac{(x-1)(x-2)(x-3)}{(x-2)(x-4)}

=\lim_{x\to2}\;\frac{(x-1)(x-3)}{x-4}

=\frac{(2-1)(2-3)}{2-4}

=\frac{(1)(-1)}{-2}

=\frac{1}{2}

\implies\boxed{\bf\lim_{x\to2}\;\frac{x^3-6x^2+11x-6}{x^2-6x+8}=\frac{1}{2}}

Similar questions