Math, asked by sudeepkumar6785480, 10 months ago

limit x tents to 1 (x^40-1)÷(x^20-1)​

Answers

Answered by BendingReality
4

Answer:

\displaystyle{\implies 2}

Step-by-step explanation:

Given :

\displaystyle{ \lim_{x \to 1} \dfrac{x^{40}-1}{x^{20}-1}}\\\\\\\displaystyle{ \lim_{x \to 1} \dfrac{x^{20^2}-1^2}{x^{20}-1}}\\\\\\\displaystyle{ \lim_{x \to 1} \dfrac{(x^{20}+1)(x^{20}-1)}{(x^{20}-1)}}\\\\\\\displaystyle{ \lim_{x \to 1} x^{20}+1}

Putting x = 1 now :

\displaystyle{\implies 1^{20}+1}\\\\\displaystyle{\implies 1+1}\\\\\displaystyle{\implies 2}

Similar questions