Math, asked by aadhikesavan17u, 5 months ago

limit x to 1 x-1/×^2-1​

Answers

Answered by Anonymous
13

 \bf \LARGE \color{pink}Hola!

To FinD :

 \rightsquigarrow \sf \: \:  \:  \lim_{x\to1} \frac{x - 1}{ {x}^{2} - 1 }  =  {?}  \\

SolutioN :

 \circ \:  \:  \sf \: If \:  \:  we \:  \:  substitute \:  \:  the \:  \:  limiting  \:  \: value \:  \:  the \:  \:  function  \:  \: will \:  \:  be  \:  \: a \:  \:  undefined  \:  \: form  \:  \frac{0}{0}

  \:  \:  \:  \:  \: \circ \sf \: \:  \:  \:  \:  \lim_{x\to1}f(x) =   \:  \lim_{x\to1} \frac{x - 1}{ {x}^{2} - 1 }   \\

  \  \implies \sf   \lim_{x\to1}f(x) =   \:  \lim_{x\to1} \frac{x - 1}{ ({x}^{} - 1 )(x + 1)}   \\

  \  \implies \sf   \lim_{x\to1} \: f(x) =   \:  \lim_{x\to1} \frac {\cancel{{(x - 1)}}}{ \cancel{ ({x}^{} - 1 )}(x + 1)}   \\

  \  \implies \sf   \lim_{x\to1} \: f(x) =   \:  \lim_{x\to1} \frac {1}{(x + 1)}   \\

Putting limiting value,

  \  \implies \sf   \lim_{x\to1} \: f(x) =   \:  \frac {1}{(1+ 1)}   \\

  \  \implies  \underline{ \boxed{\sf   \lim_{x\to1} \: f(x) =   \:  \frac {1}{2}  }} \\

____________________

HOPE THIS IS HELPFUL...

 \tt \fcolorbox{skyblue}{skyblue}{@StayHigh}

Similar questions