Math, asked by shravani37, 1 year ago

Limited X tends to 4 x 3 - 64 upon x 2 - 16​

Answers

Answered by Sharad001
96

Question :-

\displaystyle  \red{\lim_{x \to 4}} \green{ \frac{ {x}^{3}  - 64}{ {x}^{2}  - 16} }  \\

Answer :-

 \to \boxed{\displaystyle  \orange{\lim_{x \to 4}} \pink{ \frac{ {x}^{3}  - 64}{ {x}^{2}  - 16} }   = 6} \\

Formula used :-

→ a² - b² = (a - b)(a+b)

→ a³ - b³ = (a - b) (a² +b² +ab)

Explanation :-

 \to \: \displaystyle  \purple{\lim_{x \to 4}} \orange{ \frac{ {x}^{3}  - 64}{ {x}^{2}  - 16} }  \\  \:  \\   \to \: \displaystyle  \red{\lim_{x \to 4}} \green{ \frac{ {x}^{3}  -  {4}^{3} }{ {x}^{2}  -  {4}^{2} } }  \\  \:  \\  \to \: \displaystyle  \orange{\lim_{x \to 4}} \green{ \frac{(x - 4)( {x}^{2}  + 16 + 4x)}{ \blue{(x - 4)(x + 4)}} }  \\  \\  \to \: \displaystyle  \blue{\lim_{x \to 4}} \green{ \frac{( {x}^{2}  + 16 + 4x)}{ \purple{(x + 4)}} }  \\   \sf taking \: limit \\  \\  \to \:   \frac{ {4}^{2}  + 16 + 16}{4 + 4}  \\  \\  \to \:  \frac{48}{8}  \\  \\  \to \: 6

\_________________/

#answerwithquality

#BAL

Similar questions